Read the Latest from the Blog!

Yes Please!

Welcome to the Blog

Addressing the curiosity decline in medicine

Addressing the curiosity decline in medicine

“So, if we’re worried about viral myocarditis, would the patient have similar symptoms as someone with pericarditis?” The astute medical student slipped me his question as we hurriedly made our way across the ward to the next patient’s room.

He had wondered whether inflammation of the heart muscle (as in myocarditis) presents like inflammation of the protective layer around the heart (the pericardium). Classically we are taught that pericarditis-type chest pain is better when sitting up (because the protective layer is kept away from the nerves that transmit pain) compared with lying down or when taking deep breaths.

“Well there is some overlap in clinical signs,” I began. But we were already on to the next patient, and so my attention was redirected. The student had looked eager to hear my response, but that expression quickly slipped away.

These missed opportunities, to explore and address complex questions, are frequent in medical education, and the downstream consequences of not fostering this curiosity are significant.

Curiosity is the necessary fuel to rethink one’s own biases, and it can reap dividends for patient care. When doctors think about a set of symptoms separately, they may reach different conclusions; for example one study found that up to 21% of second opinions differ from the original diagnosis.

Allowing doctors to express their curiosity is crucial and it’s time we encourage all medical trainees to be curious.

The decline in curiosity could be caused, in part, by medical trainees assuming a traditionally passive role in hierarchically organized settings like hospitals, suggests a 2011 paper, coauthored by Ronald Epstein, MD, a professor of family medicine, psychiatry, oncology and medicine at the University of Rochester Medical Center.

“There’s a dynamic tension here. People pursue medicine because they are curious about the human experience and scientific discovery, but early in training they are taught to place things in categories and to pursue certainty,” Epstein told me.

A 2017 McGill University study led by pediatrician Robert Sternzus, MD, took this theme a step further. Sternzus and colleagues surveyed medical students across all four years about two types of curiosity: trait curiosity, which is an inherent tendency to be curious; and state curiosity, defined as the environment in which the trait curiosity can survive. Trait curiosity across all four years was significantly higher than state curiosity. The authors concluded that the medical students’ natural curiosity may not have been supported in their learning environment.

“I had always felt that curiosity was strongly linked to performance in the students I worked with,” Sternzus says. “I also felt, as a learner, that I was at my best when I was most curious. And I certainly could remember periods in my training where that curiosity was suppressed. In our study the trends that we found with regards to curiosity across the years confirmed what I had hypothesized.” Sternzus has since spearheaded a faculty development workshop on promoting curiosity in medical trainees.

So what might be the solution, especially as the move towards competency-based training programs may not reward curiosity, and at a time where companies in places like Silicon Valley — which invest in curious and talented minds — position themselves to be another gatekeeper of health care?

New work led by Jatin Vyas, MD, PhD, an infectious disease physician and researcher who directs the internal medicine residence at Massachusetts General Hospital, offers one idea. His team developed a two-week elective program, called Pathways, which allows an intern to investigate a case where the diagnosis is unknown or the science isn’t quite clear. They then present their findings to a group of up to 80 experienced physicians and trainees.

“What I have found is that many interns and residents have lots of important questions. If our attendings are not in tune with that — and it’s often due to a lack of time or expertise — the residents’ questions are oftentimes never discussed,” Vyas says. “When I was a resident, my mentors helped me articulate these important questions, and I believe this new generation of trainees deserve the same type of stimulation and the Pathways elective is one way to help address this.”

At the end of June, Pathways reached the end of its second year, and Vyas recounts that resident satisfaction, clinical-teacher satisfaction, and patient satisfaction were all high. “Patients have expressed gratitude for having trainees eager to take a fresh look at their case, even though they may not receive a breakthrough answer,” Vyas says.

The job of more experienced clinicians is to nurture curiosity of learners not just for the value it provides for the students, but for the benefits it poses for patients, Faith Fitzgerald, MD, an internist at the University of California Davis, has written. Physicians of the future, and the patients they care for, deserve this.

**Originally published in the Stanford Medicine Scope Blog**

How doctors can help skeptical patients understand vaccines

In 1853, as public health awareness was growing in England, Parliament passed a law requiring all babies to be vaccinated for smallpox, a virulent and deadly disease. The vaccine, developed by physician and scientist Edward Jenner at the turn of the previous century, was an effective way of preventing smallpox. Yet, not everyone was happy about the new law.

Pockets of resistance arose quickly, and in 1867, the National Anti-Compulsory Vaccination League was founded, with concerns not dissimilar to those of today’s vaccine skeptics. The group questioned whether the vaccine might harm its recipients; they believed doctors were somehow profiting from the vaccination law; and they railed against the absence of personal choice.

Today, with the measles epidemic, we are back, effectively, to where Brits found themselves in the 19th century. But there is one big difference. Then, there was incomplete knowledge of how diseases spread and how vaccinations prevent them. Now, the issue isn’t so much a lack of information but the lack of a proper foundation on which to process information. Doctors need to help provide that foundation for their patients.

Not long ago, the father of one of my pediatric patients asked me a simple question about vaccinations: “How is giving a medication to my healthy child supposed to be a good thing?”

It was a eureka moment for me to hear that he considered vaccines to be medicines rather than what they actually are: prevention tools. A vaccine needs to be seen more like a helmet or a seat belt — preventing something from happening rather than treating something that’s there. I tried to clarify how vaccines work by using an analogy. I asked him if he read aloud to his son. He did. I likened vaccines to what happens when he repeatedly points to and identifies an object in a favorite book. Over time, his son learns what the object looks like, and when he sees it in real life, he will recognize it.

Similarly, a vaccine contains protein identifiers of the virus or bacteria it is aimed at preventing. It doesn’t have the complete virus or bacteria itself — just as a book has only a picture of, say, a zebra, not the actual animal. The immune system learns to “recognize” the identifiers, and is thus able to mount a strong response if and when it encounters the actual virus or bacteria, much as a child could recognize a real zebra in the zoo because of exposure to pictures of one.

Two other concepts doctors need to help their patients understand are causality and risk. Causality is tricky. In part, it’s a matter of timing. If your toe hurts immediately after you hit it against the door, it’s reasonable to assume the door caused it. But timing alone isn’t enough; there also must be plausibility — a rational reason to connect one thing with another. There is a rational reason, after years of study, to connect smoking to lung cancer, for example. But even though the symptoms of autism often first emerge in children at around the same age that they are being vaccinated, there’s no biologically plausible basis for a connection — any more than, say, than if a child who prefers to wear yellow every day develops autism, we could establish that yellow clothing caused the condition.

Similarly, and related to this, most of us are poor judges of risk and its role in how we process uncertainty. We fear dying in a plane crash more than in a car accident, though the latter is far more likely. With vaccines, hearing about a rare side effect, especially if coupled with an emotional element (having a close friend who shares the same fear, for example), can make the risk of being vaccinated seem far greater than the risks posed by the disease it would prevent, even though quite the opposite is true.

That said, it’s important for doctors to empathize with parents who express these fears. Whether or not a fear is fully rational, it’s real. One thing that can help is explaining not only the research behind vaccine risk, but also the rigor with which research articles are appraised and reviewed. It was that rigor that exposed, in the end, the fraudulent “research” that suggested a vaccine-autism connection. It was also scientific rigor over decades of meticulous research that has established the safety and efficacy of vaccines. And the inquiry doesn’t stop when a vaccine hits market. The Vaccine Adverse Event Reporting System is a U.S. government-sponsored safety surveillance program aimed at quickly spotting problems with vaccines. In the past, it has been able to rapidly identify potential problems, as it did with a first-generation rotavirus vaccine, for instance.

A final thing doctors might want to share with reluctant patients is something that I myself was surprised to learn: Vaccines are only a tiny fraction of pharmaceutical profit. So the argument in vaccine-hesitant communities that vaccines are promoted largely because they provide huge profits for drug companies simply doesn’t pan out.

Part of the reason there’s such a disconnect between physicians and vaccine-skeptical patients is that they don’t come into the discussion speaking the same language. The more we can learn about each others’ perspectives, the better it will be for children and for public health.

**Originally published in the Los Angeles Times**

Talking to Your Child’s Doctor About Alternative Medicine

Talking to Your Child’s Doctor About Alternative Medicine
[by Drs. Amitha Kalaichandran; Roger Zemek; Sunita Vohra]

A few months ago, the Centers for Disease Control and Prevention published a report about a young boy from Connecticut who developed lead poisoning as a direct result of his parents giving him a magnetic healing bracelet for teething. It seems every few months a story will cover a tragic case of a parent choosing an unconventional medical treatment that causes harm.

More often, the alternative treatments parents choose pose little risk to their kids — anything from massage therapy to mind-body therapies like mindfulness meditation and guided imagery. Research indicates that overall, there are few serious adverse events related to using alternative therapies. But when they do occur, they can be catastrophic, in some cases because caregivers or alternative care providers are poorly informed on how to recognize the signs of serious illness.

The National Center for Complementary and Integrative Health, part of the National Institutes of Health, now refers to these alternative treatments as complementary health approaches, or C.H.A. They are defined as “a group of diverse medical and health care systems, practices and products not presently considered to be part of conventional Western medicine.” In some cases they complement traditional care. In others they are used in place of standard medical practices.

It’s a polarizing subject that unfortunately gets muddled with conversations about anti-vaccination. But while some anti-vaxxers use complementary health approaches, people who use C.H.A. don’t necessarily doubt vaccine effectiveness.

What’s less clear is the proportion of parents choosing complementary health approaches for their children, for what conditions, and their perceptions of effectiveness. We also know very little about parents’ willingness to discuss their use with their child’s doctor, and most doctors receive little training in C.H.A. use, especially in children, and how to counsel parents about it.

To explore these questions, we surveyed parents in a busy emergency room in eastern Ontario, Canada. As reported in our recent study, just over 60 percent said they gave their child a C.H.A. within the last year. Vitamins and minerals (59 percent) were the most common ingested treatment, and half the parents used massage. Our research found that parents with a university-level education were more likely to use a complementary treatment than those with less education.

Parents also perceived most of the C.H.A. that they used — from vitamins and minerals to aromatherapy to massage — as effective. However, less than half of parents felt that homeopathy or special jewelry would be helpful.

As reported in our recent paper, we then asked parents if they had tried a complementary therapy for the problem at hand before they came to the emergency room. Just under one-third reported using C.H.A. for a specific condition, most often for gastrointestinal complaints. Interestingly, in the case of emergency care, there was no correlation with the parents’ level of education.

In work we previously presented at the International Congress of Pediatrics, we asked these parents whether they believed their provider — a nurse practitioner or a doctor — was knowledgeable about complementary medicine. About 70 percent believed their health provider was knowledgeable about C.H.A., although this perception was less likely among parents with a university-level education. Surprisingly, 88 percent said they felt comfortable discussing their use of C.H.A. with their medical provider.

Previous reports have found that only between 40 percent and 76 percent actually disclose C.H.A. use with their doctor. In our study, we were talking to parents who had brought their child to an emergency room, where they would be more likely to talk about whatever treatments they had tried. In many cases, parents may refrain from even taking their child to the doctor if their problem is not a serious one. So it is likely that the overall proportion of parents who use C.H.A. for their children is an underestimate.

Our findings underscore the need for parents and their child’s health providers to have more open conversations about what they are giving to their child for health reasons.

Medical providers also need to be actively asking whether C.H.A. is used and stay up-to-date on current evidence about complementary therapies, including potential interactions with any medications they may also be taking. Much of this information is summarized on the N.C.C.I.H. website.

Here are some ways parents can approach the issue of alternative therapies with their doctors:

■ Write down everything your child is using as though it’s a medication. Include any special diets, teas and visits to other complementary medicine providers.

■ Keep track of any positive and negative results from C.H.A. that you notice —- including no effect — and the cost involved

■ If your child’s health provider doesn’t ask about C.H.A., start the conversation.

Physicians and other medical providers should:

■ Learn more about these treatments and the evidence behind them. The N.C.C.I.H. is a good place to start.

■ Try not to be judgmental; causing a rift with a parent because you might not agree with their choices may cause a breakdown in the therapeutic relationship.

■ Evaluate risks and benefits, and be aware of what is unknown about the specific C.H.A. being used. Make efforts to learn more about the therapy and take action if there are clear side effects and risks, documenting the discussion where appropriate.

Parents and doctors are on the same team when it comes to caring for a child’s health. Taking time to explore what parents and children are using, including any therapies that lie outside the scope of conventional medical practice, provides an opportunity to have open and honest discussions about risk, benefits and safety around complementary health approaches.

**Originally published in the New York Times**

Use and Perceived Effectiveness of Complementary Health Approaches in Children

Use and Perceived Effectiveness of Complementary Health Approaches in Children

All residents doctors in Canada are required to work on a research project, and I was excited to apply my research/epidemiology training towards an issue that is particularly important in pediatric medicine: why parents use complementary/alternative medicine, and more importantly, perceptions on how effective various therapies and approaches might be.

My research team, led by Dr. Roger Zemek and Dr. Sunita Vohra, was excellent, and brought a variety of expertise in both emergency medicine (which was the population we surveyed) and integrative pediatrics. We worked with some excellent biostatisticians and epidemiologists as well, and were able to present at two different conferences, publish two papers, and write about our findings for the New York Times. It was a testament to the power of having a great team with skills that complement each other, with shared goals and values.

Here’s what we found:

~ About 62% of participants used complementary health approaches (CHA) for their children over the previous 12 months, with vitamins/minerals and massage being particularly common. And higher parental education was associated with a higher odds of using CHA, and most parents believed that the CHA used was effective.

~ When it came to acute conditions that required an emergency room visit, about 29% of caregivers used CHA within the previous 72hours specifically for that complaint, and use for gastrointestinal complaints was most common.

~ Open and honest discussions between parents/caregivers and their doctors about CHA are crucial, and in our NYT article myself and my research supervisors outline some of our suggestions.

Research